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Electric field influence in dopant segregation in 
the LiNbOz:Cr 3+ crystal growth process 

E. S. OCTAVIANO,  J. P. ANDREETA, N. J. H. GALLO 
Instituto de Ffsica e Qufmica de S#o Carlos, Caixa Postal 369, 13560 S#o Carlos, SP, Brazil 

We observed, in melt crystal growth experiments, the influence of electric field on the effective 
segregation coefficient. An expression was developed, based on the equation of Burton, Prim and 
Slichter, to explain these phenomena in the crystal growth process of LiNbOa: Cr 3§ 

1. Introduction 
The effective segregation coefficient is an indicator of 
the quantity of dopant that is incorporated in a crystal 
during the growth process. The most usual description 
of the effective segregation coefficient is based on the 
theory of Burton, Prim and Slichter [11 (the BPS 
theory), where only the normal crystal parameter de- 
pendence is considered. In some others' work [2-6] it 
has been observed that the effective segregation coef- 
ficient is also a function of the applied electric field in 
the crystal growth process. One of the reasons for 
which this electric field is applied in crystal growth is 
the possibility of obtaining single-domain ferroelectric 
crystals directly from the experiment without new 
heating for the poling process [71. In some cases the 
influence of electric field in dopant incorporation is 
explained by a growth rate change due to the Peltier 
effect and constitutional supercooling [5, 6]. In an- 
other case the phenomena that explain the dopant 
incorporation rate changes are related to electro- 
chemical processes in the boundary layer and ion 
electromigration [24] .  All these effects normally 
modify the crystal growth rate due to the dopant 
concentration profile changes that again provoke new 
modifications in the dopant distribution. These stud- 
ies were done by Angus et al. [8], Pfann and Wagner 
[91, Hay and Scala [101 and Verhoeven [11]. The 
result is an expression for the effective segregation 
coefficient obtained through adjustment of the BPS 
equation [11 given by 

kef f = 1 + 1 + ko[1 + ( f ' / f ) l  - 1  

exp(  - f ~ - ) ( 1  + f f ) l  (1) 

where f '  is the ion solute velocity due to the electric 
field (through the interface), f is the growth velocity, 
8 is the boundary layer thickness, D is the diffusion 
coefficient and ko is the equilibrium segregation coef- 
ficient. The value off '  proposed by Pfann and Wagner 
[91 and Verhoeven [111 is 

f ' =  EAg (2) 

where E is the applied electric field and Ag is the 

0022-2461 �9 1993 Chapman & Hall 

differential ionic mobility of the solute and solvent. 
The value proposed by Hay and Scala [101 is 

y = B e E Z *  (3) 

where B is the solute mobility, e is the electronic 
charge, Z* is the effective valence and E is the applied 
electric field. Nevertheless, these treatments, according 
to Hay and Scala [10], have a strong limitation for 
quantitative analyses due to the impossibility of accu- 
rate evaluation o f f '  in actual crystal growth experi- 
ments. 

In this work we derived an equation that permits us 
to predict, quantitatively, modifications in the effective 
segregation coefficient due to the application of an 
electric field in the crystal growth process, especially 
applied to cases in which the electromigration of ions 
is predominant, and these evaluations were checked 
with experimental results. 

2. The BPS theory modif ied by the 
action of an applied electric field 

The BPS theory gives a functional variation for the 
effective segregation coefficient, expressed by 

ko 
keel - ko + (1 - ko) exp( - f  8/I)) (4) 

This result comes from the continuity equation 

8C/& = - V(C V -  DVC) (5) 

where V is the fluid velocity vector (cm s- 1) and C is 
the dopant concentration. In order to consider the 
electric field influence, we must introduce a dopant ion 
current effect, adding a new term to the continuity 
Equation 5, that corresponds to the dopant ionic flux. 
The ionic current direction will be determined by the 
electric field. The new continuity equation can now be 
written as 

( 00i) -V(CV-DVC)-~-+B VJi+ & ] = 0  (6) 

where Ji is the ionic current density and 9i the ionic 
charge density. The term B is a proportionality con- 
stant that supplies the necessary dimensional adjust- 
ment for the electric current continuity equation in 
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BPS theory. This term will also take into considera- 
tion the polarization of the electric field in the dopant  
ion adsorption or desorption effect. Considering the 
one-dimensional problem in the stationary state, we 
have 

d2C + f d C  d J  i 
D ~  dx + B d x x  = 0  (7) 

where Ji is the ionic current density, written in a gen- 
eral way as 

Ji =- N e v  (8) 
where e is the absolute value of the ionic charge, v is 
the velocity vector of ionic displacement and the N is 
the number  of charge carriers per unit volume. In our 
case the charge carrier will be the dopant  ions. We can 
then identify 

N = C (9) 

and the proportionality constant B as 

B = 7 /e  v (10) 

where 7 is a new proportionality constant. Under 
these considerations Equation 7 becomes 

d2C 
7) dC 0 (11) 

Dd~x2 + ( f +  dx = 

We can observe in Equation 11 that the electric field 
modifies the crystal growth velocity through the term 
y. The new boundary conditions for this modified BPS 
equation will be 

(a) C = Co, x = 0 where x is measured from the 
crystal interface and Co is the interface concen- 
tration; 

(b) C = C L f o r x = 8 ;  
(c) (Co - Cs) ( f +  7) = D(dC/Dx)  for x = 0. 

The solution of Equation 11 under the boundary 
conditions (a), (b) and (c) can be written as 

ko 
keff = k 0 -~- (1 -- ko) exp [ - ( f +  7)6/D] (12) 

where 7 is the crystal growth rate modification which 
must be obtained as a laboratory parameter. 

The simplest equation to represent 7 as a function of 
the electric current density, we could write as follows 
(this case occurs when an increase in the current den- 
sity causes a decrease ir~ keff) 

y = a J  (13) 

where a is a constant to be experimentally determined 
and J is the applied electrical current density. Com- 
bining Equations 13 and 12 we obtain 

k0 
kef f = (14) 

ko + (1 -- ko) exp [  - ( f +  aJ)~/O]  

For [J]  = [mAcro - z ]  and [7] = I c t u s - l ] ,  dimen- 
sional analysis requires that [a] = [cm 3 m A - l s  - 1]. 
There is still the possibility (depending on the polar- 
ization of the crucible-melt system) that an increase in 
the current density causes a decrease in the rejection of 
the dopant  in the solid phase, and consequently an 
increase i n keff. We can express this variation as in- 
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versely proportional  to the current density, i.e. 

7 = b/J (15) 

where b is the constant to be experimentally deter- 
mined. Combining Equations 12 and 15 we obtain 

ko 
keff = (16) 

ko + (1 - ko) exp { - [ f +  (b/J)] a/D} 

In this case the dimensional analysis requires that 
[b] = [mAcm - 1 s - 1 ]. 

3. Exper imenta l  results 
In  order to determine the constants a and b we must 

find a suitable convention for the polarization of the 
crucible crystal system because, as we will observe, 
the value of the constant depends on the polarization, 
and also on the changes in the shape of the interface 
that are also a function of the electric field. In this 
paper we can use the Rfiuber and Feisst [3] conven- 
tion that the current density is positive when the 
crystal is positively polarized in relation to the cru- 
cible and vice versa. 

In the application of Equations 14 and 16 we con- 
sider only the module of the current density. However, 
when we apply an electric field positively polarized in 
our convention, the electrical configuration is as 
shown in Fig. la. In this case there is an electric field 
near the interface (from crystal to melt). Since the 
dopant  ions are positive (Cr 3§ there exists a strong 
tendency for dopant  rejection by the effect of the 
electric field. These results were obtained by R/iuber 
and Feisst [3] and experimentally confirmed in our 
laboratory. 

When we apply an electric field in which the crystal 
is negatively polarized in relation to the crucible, we 
have a configuration as shown in Fig. lb. There will 
then be a tendency to increase the dopant  adsorption 
in the crystal. 

For  L iNbO3:Cr  3§ and current densities up to 
approximately 6 mA cm 2, the dopant  concentration 
starts to decrease in relation to the value predicted by 
the BPS theory. This behaviour is certainly related to 
the change in the growing interface shape. Rfiuber and 
Feisst [3] found out, for LiNbO3 :Cr 3 +, that when the 
,current density is positive, usually a convex interface 
(in relation to the melt) appears, and when the current 
density is negative the interface is usually flat or con- 
,cave. For the current density range of - 6 to - 15 
m A c m  -2, however, the concentration starts to in- 

crease as one could expect. 
Based on this information, we can analyse the com- 

bined effect of the interface shape and the electric field 
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Figure 1 (a, b) Possible polarizations of the crystal-melt system. 



T A B L E  I Polarization, interface shape, A and B constants 

Polarization Interface Constant  

J( + ) Convex a~ 
J( - ) Flat a2 

Concave bl 

as shown in Table I. For a negative current density the 
dopant concentration change can be associated with 
modifications in the interface shape from convex to 
flat and afterwards to concave. 

For the LiNbO3 : Cr 3 + data in the negative current 
density region we would have, in the range of approx- 
imately 0 to 6 mA cm-2,  a flat interface, and at ap- 
proximately - 6  to - 15 mA cm -2 we would have 
a concave interface, and in the positive current density 
in the range of approximately 0 to 15 mA cm-2  we 

would have a convex interface. So we must obtain 
experimentally three different constants to represent 
the effective coefficient segregation in every region. 
Then we could consider three distinct behaviours as 
described in Table I. 

Using experimental results obtained by R/iuber and 
Feisst [3] for the effective segregation coefficient of 
Cr 3+ in LiNbO3 (Fig. 2), where f = 6 . 5 m m h  -1, 
c0 = 34 r.p.m, and ko = 5, it was possible to calculate 
the al,  a2 and bl constant values 

al = 2.48 x 10-1 cm 3 mA-  t s-  1 
aa = 9.10 x 10-2 cm3 mA Is  
b l  = 3 . 1 0 x  1 0 - 6 m A  c m - l s  - 1  

Fig. 3 shows the new behaviour of keff as a function of 
the electric current density in three different regions 
after the introduction of the correction term (Equa- 
tions 16 and 14), and our experimental results. 
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Figure 2 kef f against J for LiNbO 3 :Cr 3+ : (O) experimental data of R/iuber and Feisst [3]. 
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4. Discussion and conclusions 
Through this formalization new elements are derived 
for the effective segregation coefficient of materials, 
obtained with the application of an electric field. Some 
of the materials do not have, obligatorily, changes in 
the interface due to the application of an electric field. 
The application of Equations 16 and 14 is general, and 
is subject to the same limitations as that of the BPS 
equation. For  each material, nevertheless, there must 
be different values (or more than one for the same 
material, as for the LiNbO3:Cr 3+ case) for the a and 
b constants. At the actual level of knowledge, we do 
not know yet whether the values of the a and b con- 
stants change with the growth parameters for the same 
material, or whether they change for a different kind of 
dopant of the same material. However, we were able 
to obtain values of the a and b constants through 
a systematic crystal growth experiment and Equations 
16 and 14 were a strong tool to theoretically predict 
the Cr 3+ concentration in the solid phase in new 
growth experiments. 
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